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A method  to solve centrosymmetr ic  structures with anomalous scatterers wich is analogous to 
the  me thod  given by Hargreaves for centrosymmetr ic  structures with normal scatterers is pro- 
posed. I t  is shown tha t  the  difference between the  values of a structure factor measured wi th  
two different wavelengths (FH(Jtl) and FH(X2)) is a complex magni tude  tha t  has a constant  
phase. A linear relationship between FH(~tl) and FH(]t~_) results and by plot t ing a correlation 
diagram the signs can be readily assigned to the different reflexions. 

The case of centrosymmetric structures has been 
treated by Mitchell (1957) by the two-wavelength 
method first outlined by Pepinsky & 0kaya (1956). 

However, the practical application of this method 
would be rather troublesome, because the observed 
structure factors for both wavelengths must be put 
on an absolute scale and the absorption differences 
for the two wavelengths used are likely to be of large 
importance. Error in the scaling tends to be higher 
when heavy atoms are present and Wilson's method 
is being used, thus rendering the correct assignment 
of signs rather difficult. 

In the case of centric isomorphous structures with 
normal dispersion, the signs can be readily assigned 
by the method given by Hargreaves (1946, 1957). 

In this paper a treatment similar to that  of Har- 
greaves is proposed for centric structures with anom- 
alous dispersion. 

Absorption corrections must, of course, be per- 
formed before the present method is used. 

For a crystal with n atoms in its unit cell, m of 
the atoms being anomalous scatterers (denoted here- 
after by A.S.), a structure factor can be expressed as 

n . . - m  

FH = ~ fj exp [2:~iH. r¢] 
]=1 

n 

+ 2.," (f~ +f~ + if;') exp [2~iH.rk] ,  
k=n- -m+l  

(1) 

where H = (h, k, l); re = (xj, y~, zj) and r~ = (xk, y~, z~) 
are the coordinates of atom j or k; subindices j apply 
to normal scatterers (N.S.) and k to A.S.; f~ = 
fo +f~.+if~,=atomic scattering factor of an A.S. 

In Mitchell's notation, 

F H =  (A~S+AA'R-B~)+i (B~S+AB'H+AH)  , (2) 

where 
A~S = ~ fo cos 2 z H . r j ,  

]=1 

AA'H = ~ f~ cos 2 ~ n . r ~ ,  
k = n--m+ 1 

" 2) A H = f k' COS 2 : r H . r k ,  
k=n--m+l 

(3) n 

B~s = __~ fo sin 2~H. r~, 
j = l  

ABH = ~ f ; s i n 2 : r n . r k ,  
k=n--m+ l 

" 

Bz = f~.' sin 2 z H . r ~ .  
k=n--m+l 

(2) is valid in general, i.e. for acentric structures. 
If the structure is centric: 

t t  B ~ S = A B H = B . = O  . 
FH is then 

FH=A~S + AA'H+ iA~ . (4) 
Moreover, 

t t t  A~S=A-~ ~vs, AA '~=AAH,  A z = A " ~ ;  

and then 
F . = F ~ ,  (5) 

i.e., Friedel's law holds again. 
Let FH(]tl) and FH(~2) be the observed structure 

factors when X-rays of wavelengths ~h and ),~ are 
used. These values must be measured either by using 
film or counter techniques. In general the sets will 
be obtained on different scales, and although in the 
latter case it is not difficult to find the scale factors, 
it is better to employ a technique which solves the 
phase problem at the same time. If al and a2 are the 
required scale coefficients relating FH (/~1) and FH()..z) 
to the absolute scale, then 
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and 
a~FH(2~)=A~ s+ AA'H(2d+ iAH ( 2 d ,  

aZFH(22)=A~ ~ + AA'~ (he)+ iA ~ (2o.). 

A~ s is the same in both cases, so that ,  by  sub- 
traction, 

alFH ( 21) --  a2FH ( 2~) 
=[AA'H (2~)-  AAH (22)] + i[AH (2d--AH (22)]; 

or  
alFg (21) -- a2FH (h2) 

---- ~" { [ f ; (2d - f i (22 ) ]  
k = n--m+ 1 

+ i[fi' ( 2d - f i '  (2~)]} cos 2 ~ H . r ~ .  

(6) 

(6') 

In  the case of a s tructure having only one class 
of A.S., the imaginary  quan t i ty  wi thin  braces in (6') 
is a constant. Let  us concentrate on this case. 

Let  

G H  = ~ COS 27~H. r~ ,  (7) 
and  k= n-m+l 

A~(2~, 22) = [f~(21)--f'k(22)]+i[f'~'(2~)--f'k' (2~)]. (8) 

GH is a geometric factor depending only on the 
positions (r~) of the A.S. When  these positions are 
known from classical methods, GH c a n  be calculated 
for every rat ional  plane H(Md). A~(21, he) is a con- 
s tant  complex quant i ty  for a given kind of atom and 
a pair of wavelengths. I ts  phase q~ is constant  ir- 
respective of H, so tha t  the difference 

alFH (21) --a2FH (he) 

will also have a constant phase. 

a~FH (2~) --agFH (22) = d~(2~, 22). GH . 

Considering real and imaginary  parts,  one obtains:  

al(AH(21)/GH)--a2(AH(22)/GH)=A.cos ~ (9) 

a~(BH(2d/GH)--a2(BH(2O.)/GH)=A.sin ~ , (10) 

aAH(2) = A~VHS + AA'H(2)=A~S +GH.f '  (2) , 
aBH (2) = A"  (2) = Gg. f"  (2), 
A. cos ~ = f '  (21) - - f '  (2~) , 

A .sin ~ = f " ( 2 d - f " ( 2 2 ) .  

and 

here 

and 

Thus the imaginary  par t  of the structure factor in 
the case under consideration can be calculated for 
both wavelengths used. 

If  we now consider only relat ively high structure 
factors, i t  is clear tha t  the real par t  will in general 
be much greater than  the imaginary ;  we can then 
make the approximat ion 

IAH] ~--]FHI; 

and subst i tut ing FH for AH in (9), 

a~(FH(2d/GH)--a2(FH(2O.)/GH)=f' (2~)--f' (22) . ( l l )  

The only unknowns in equat ion (l l)  are al and  a.,. 
If now we plot a correlation diagram using 

FH(2d/GH as ordinates and FH(22)/GH as abscissae, 
it  is clear tha t  the points should be on a s t ra ight  line. 
Reasonable deviations due to: 1) exper imenta l  errors 
in the F 's ,  2) errors in the positions of the A.S. and 
hence in GH, and 3) the approximat ion  involved 
(]AH] T ]FHI) are to be expected. The analysis  proceeds 
then in the same way as in Hargreaves '  method. 
Intercepts  on both axes give est imates of the scale 
factors al and a2. 

If f ' ( 2 d - f ' ( 2 e )  is ra ther  small,  the s t ra ight  line 
will lie near the origin, and it  will not  be easy to 
decide whether a given point  belongs to the line or 
to its symmetric .  In  such a case the method will fail 
and the correct assignment of signs will not be possible. 
The distance from the line to the origin needs to be 
at least several t imes the order of ~F/GH, where A F  
stands for the error in the F 's .  

Conclus ions  

1. 2, and 22 should be selected in such a way as to 
make f ' (21) - f ' (22)  relat ively high (of the order of 
several electrons) for each par t icular  case. Dauben  & 
Templeton (1955) have computed f ' ( 2 )  and f " ( 2 )  for 
atoms with Z > 20 using the wavelengths Cr K~, 
Cu Ka and Mo K s .  Templeton (1960) has recent ly 
extended these calculations to l ighter elements and 
to different values of sin 0/2 for the same three 
wavelengths. His values for sin 0/2=0 are those 
publ ished by Dauben  & Templeton with modifications 
tha t  take into account the effect of N-shell  electrons, 
while those for other values of sin 0/2 were obtained 
by  mul t ip lying the contr ibution of each electron 
group by  its orbital  transform. As predicted, the dis- 
persion corrections are only sl ightly sensitive to 
changes in sin 0/2. The author  was not aware of 
Templeton 's  latest  figures during the preparat ion of 
the present paper, but  the conclusions obtained 
remain  unchanged. In  order to allow for the ment ioned 
variat ions of the dispersion corrections with sin 0/2 
one may  use their  mean  value rather  t han  the value 
for sin 0 / 2 = 0 .  

Pepinsky has obtained extrapolated values of f~' 
for K s  radia t ion from Mn, Fe, Ce and Ni targets. 
Values for f~ are desirable if the present method is 
to be used, a l though in this case extrapolated values 
will not p robably  be accurate enough. I t  seems to be 
worth while to extend the calculations to many  other 
wavelengths. One could probably  find pairs of values 
of 2 suitable for use in given regions of the periodic 
table. For instance the pair Cu K s  and Mo K s  looks 
quite adequate to deal with elements from Z =  62 (Sin) 
to Z = 74 (W), their  differences in f '  (2) ranging from 
5.0 to 12.6 electrons; while Cr Kx and Mo K.~ could 
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probably be used from Z = 53 (I) till about Z = 66 (Dy). 
Calculations have been undertaken in this laboratory 
and will be reported in due course. 

2. Only planes with a high value of GH should be 
plotted. Probably values larger than unity will be 
needed, but this point cannot be decided without 
further study. 

3. Experimental errors in FH should be kept as 
low as possible, for the reasons explained in the text. 
Visual estimates of intensities would probably be of 
little use when utilizing this technique. 

4. As f '  (21) - f '  (22) is nearly independent of sin 0, 
only one graph is necessary, except perhaps for crystals 
with rather high temperature factors. 

5. The arguments can easily be extended to include 
the case where more than one kind of A.S. is present 
in the structure. 

R e s u m e n  

En este trabajo se propone un m6todo para resolver 
estructuras centrosim@tricas con dispersores an6malos 

en forma an£1oga a la usada por Hargreaves en estruc- 
turas centrosimdtricas a dispersidn normal. 

Se muestra que la diferencia entre los valores de 
un factor de estructura medidos con dos longitudes 

de onda diferentes (FH(il) y FH(ie)) es una magnitud 
compleja cuya fasees constante. Se obtiene asi una 
relacidn lineal entre FH(11) y FH(~2) y trazando un 

diagrama de correlacidn se puede f£cilmente asignar 
los signos de las distintas reflexiones. 
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Lattice constants, atomic positional parameters and Debye-Waller temperature factors were 
measured for Bi and Bi-rich binary solid solutions containing atomic percentages 0 to 30 Sb, 
0.39 Pb, 0.125 Sn, 0.15 Te, and 0.22 Te at 4.2, 78, and 298 °K. The alloys were made by zone 
levelling and were based on very pure, zone refined Bi. The lattice constants of the Bi-Sb alloys 
vary linearly in the composition range x -- 0 to 30 atomic percent Sb. The variation can be described 
by the equations: 

a -- 4.546 - 23.84.10-4x, c -- I 1.863 - 51.66.10-4x, at 298 ± 3 °K. ; 
a=4"534-21"92.10-4x, c=II'814-48"75.10-4x, at 78 °K.; 
c=II'803-40.75.10-4x at 4.2 °K. (a,c in /~); 

the average error is estimated to be 1 part in 2000. The atomic positional parameter z in the Bi-Sb 
alloys remains approximately constant up to about 12% Sb, and then rises from 0.23407 to 0.23420 
at 4.2 °K., 0.23400 to 0.23413 at 78 °K., as the Sb content increases from 0 to 30 atomic percent Sb; 
the standard deviations of the z's are estimated as 25 × l0 -6. At room temperature z =0.23389. 
At 78 °K. the z for the other alloys is not significantly different from the value for pure Bi. The 
temperature factors B, for vibrations parallel to the c axis, are approximately 0.10, 0.32 and 1.14 
at 4.2, 78 and 298 °K., respectively, for pure Bi, and increase slightly with increasing Sb content in 
the Bi-Sb alloys. 

In troduct ion  

Precision structure data on bismuth of extreme purity 
and its alloys are needed to guide the development of 
theories on the influence of band structure on crystal 
structure in these materials, such as the one proposed 
by Blount & Cohen (unpublished) referred to by Jain 
(1959) and Barrett (1960), in which it was postulated 

that  the distribution of electrons in conduction and 
valence bands directly controls the magnitude of the 
atomic parameter z, and that  consequently z should 
be altered by changes in electron concentration and 
temperature. The determinations of the bismuth 
atomic parameter by James (1921), Hassel & Mark 
(1924), and Goetz & Hergenrother (1932) are in- 
adequate for present needs; a determination was made 


